Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme.

نویسندگان

  • M Boll
  • S S Albracht
  • G Fuchs
چکیده

An enzyme was recently described, benzoyl-CoA reductase (dearomatizing), which catalyses the ATP-driven reduction of the aromatic ring of benzoyl-CoA yielding a non-aromatic CoA thioester, ADP and phosphate [Boll, M. & Fuchs, G. (1995) Eur. J. Biochem. 234, 921-933]. The 170-kDa enzyme consists of four different subunits and contains approximately 12 Fe and acid-labile sulfur/mol. Benzoyl-CoA reductase exhibits ATPase activity in the absence of substrate. It is shown that only the reduced form of this iron-sulfur protein has ATPase activity. ATPase activity is reversibly lost when the enzyme is oxidized by thionine; reduction of the enzyme fully restores ATPase and ring-reduction activity. 2 mol ATP are hydrolyzed/2 mol electrons transferred in the course of the reaction. The product ADP acts as competitive inhibitor (Ki = 1.1 mM) for ATP in benzoyl-CoA reduction; ADP inhibits ATPase activity to the same extent as ring-reduction activity. EPR investigation of the dithionite-reduced enzyme suggested the presence of two separate [2Fe-2S] clusters and two interacting [4Fe-4S] clusters. Addition of MgATP to the reduced enzyme resulted in a new isotropic signal at g = 5.15 and a weak signal at g = 12; in controls with MgADP only a minor signal at g = 5.15 was observed. The positions, shapes and temperature dependencies of these MgATP-induced signals are indicative for excited states of a S = 7/2 spin multiplet. The [2Fe-2S] signals were not affected by ATP, but one of the [4Fe-4S] clusters became slowly oxidized. Addition of both benzoyl-CoA and MgATP resulted in a major oxidation of the iron-sulfur clusters accompanied by the appearance of some minor signals of unknown origin in the g = 2.037-1.96 region. Neither the benzoyl-CoA plus MgATP-oxidized nor the thionine-oxidized enzyme showed the ATP-dependent formation of the high-spin signals of the reduced enzyme. At present we hypothesize that the S = 7/2 signal is due to an ATP-induced change of one of the [4Fe-4S] clusters. The data suggest that hydrolysis of MgATP is required to activate the enzyme; in the absence of substrate the energy involved in this activation dissipates. MgATP-driven formation of this excited state of the reduced enzyme rather than transfer of electrons from the reduced enzyme to the aromatic substrate appears to be the rate-limiting step in the catalytic cycle. We suggest that the excited state is required to overcome the high activation energy associated with the loss of the aromatic character and/or to render ring reduction irreversible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases.

Aromatic compounds are widely distributed in nature and can only be biomineralized by microorganisms. In anaerobic bacteria, benzoyl-CoA (BCoA) is a central intermediate of aromatic degradation, and serves as substrate for dearomatizing BCoA reductases (BCRs). In facultative anaerobes, the mechanistically difficult reduction of BCoA to cyclohexa-1,5-dienoyl-1-carboxyl-CoA (dienoyl-CoA) is drive...

متن کامل

Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes.

In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring ...

متن کامل

EPR and Mössbauer studies of benzoyl-CoA reductase.

Benzoyl-CoA reductase catalyzes the two-electron transfer from a reduced ferredoxin to the aromatic ring of benzoyl-CoA; this reaction is coupled to stoichiometrical ATP hydrolysis. A very low reduction potential (less than -1 V) is required for the first electron transfer to the aromatic ring. In this work the nature of the redox centers of purified benzoyl-CoA reductase from Thauera aromatica...

متن کامل

Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens.

The degradation of aromatic compounds follows different biochemical principles in aerobic and anaerobic microorganisms. While aerobes dearomatize and cleave the aromatic ring by oxygenases, facultative anaerobes utilize an ATP-dependent ring reductase for the dearomatization of the activated key intermediate benzoyl-coenzyme A (CoA). In this work, the aromatic metabolism was studied in the obli...

متن کامل

Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens.

Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of biochemistry

دوره 244 3  شماره 

صفحات  -

تاریخ انتشار 1997